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solid curves) and for the second normal wave for k,o = 10 (the dashed curves). The normal 
wave damping coefficient in the presence of a permeable boundary considerably exceeds the 
transverse wave damping coefficient. 

1 

The influence of overflows through the interface of the media on normal wave propagation 
reveals the possibility of an experimental determination of the filtration characteristics of 
a medium by means of the parameters of these waves. 
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ON THE STATE OF STRESS AND STRAIN OF LAYERED PLATES 
OF NON-SYMMETRIC CONSTRUCTION* 

I.S. ZORIN and YU.A. ROMASHEV 

An asymptotic analysis is performed of the elasticity theory problem of 
the deformation of a thin multilayer anisotropicplate in a three- 
dimensional formulation without assumption regarding the regularity of 
the plate construction and the nature of the layer or packet deformation 
as a whole. 

Results /l/ are used of an investigation of the solutionsofelliptic 
boundary value problems in thin domains. The relative packet height is 
the small parameter h. A system of eq ations is obtained for the limit 
problem (as h-01, effective plate s P. iffness characteristics are found, 
and specific examples of their analysis are presented. 
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Asymptotic methods of constructing the solutions of problems of the 
theory of thin plates are developed in /l-8/; isotropic multilayer plates 
and anisotropic two-layer beams were studied /9-ll/bythemethoddescribed 
in /3/. 

An important feature of anisotropic laminar plates of non-symmetric 
construction is that the state of stress in any section parallel to the 
middle surface is characterized during their deformation by interacticn 
of the bending-torsion and tension-shear states. The limit bending 
equations for a thin plate of complex structure are derived by using the 
Kirchhoff hypothesis in /5, 12/. 

1. Formulation of the problem. A spatial problem is considered for the elasticity 
theory problem of the deformation of a thin cylindrical domain 51 whose side surface is clamped 
stiffly while loads of a given intensity are applied to the bases. The plate occupies the 
domain 52 and is a packet of anisotropic layers between which ideal mechanical contact is 
realized. The layers are arranged parallel to the plate bases. 

A Cartesian coordinate system x=- (zr1,t2.r3) is introduced in such a way that its origin 
0 is in the domain Q = o X I-H,HI while the axis 01, is normal to the packet middle 
surface 0. It is assumed that the ratio of the plate height 2eto the characteristic linear 
dimension D of the domain o is a small parameter h>O. Now, let the quantity D be reduced 
to one by a change of scale. Moreover, it is assumed that all the quantities with the dimen- 
sions of length are referred to D. The coordinate symbols utilized above and the notation 
used for the domains are conserved. 

Mathematically the problem can be formulated as follows. The plate n consists of m $ n 

layers V = {x:x' = (q, z2)E 0, hl, < I, < hl;,,} denoted by numbers in the range I-m, nl: W = 

The equilibrium equations 

e&j (X, h) = 0, 2 c-z W; i, j = I, 2, 3 (1.1) 

are satisfied in each of the domains Q'- 
The components 0,; and Eij'of the stress and strain tensors are connected by the Hooke's 

law. It is convenient to write this in a form analogous to that utilized in /5, 12/. Namely, 
if e and B are six-dimensional vectors with the components Err. 
a,;, respectively, where ~11 

s,,, ylo7 ylsV yz3, es3 and urr, . ., 
are the shear strain components, then 

(4.2) 
and B is a syrmuetric matrix of the elastic constants whose elements are four 3x3 matrices: 

B, andB, ontheprincipal diagonals, and also the matrices B. and BzT. The superscript T 
denotes the transpose. 

Adjoint conditions 

e@)(x', hl, + O;h)- 0(x', hl, - O;h)=O 

u(x',hl,+O;h)-u(x',hl,-O;h)=O;x'~o,r~[--++i;n-11 

(1.3) 

are given on the layer boundaries. 
Here u = (u,, uz. us) is the displacement vector, 0 = (era, %a, UI$ ) is the stressvector 

acting over areas normal to the middle surface of the plate. 
The boundary conditions on the faces and side surfaces ap of the slab R have the form 

& (I', hl, - 0; h) = p+ (x’, h), 4’) (x’, hl_,; h) = p- (x', h); x’ E o (1.4) 

u(x,h)=O; x’E&, hl,<z,<M, (1.5) 

It is assumed that the boundary of the domain 61 is a regular curve, there are no mass 
forces, the vectors of the right-ha@ sides in (1.4) and (1.5) can be represented as pf(x', 

h) = (h-'p, Pi)* where P = tpl, P,), ~1 V = 1, 2, 3) are smooth functions (of the class Cm) of 
the coordinates x1,%. 

The asymptotic form of the solution of problem (l.l), (1.3) and (1.5) is represented in 
the form of power series in the parameter h. Outside a small neighbourhood of the plate edge 
the coefficients of these series are sought fran the solutions II*) of problems in sections by 
a plane normal to its bases through the domain 9, and the solutions of the limit problem in 
the domain o. An algorithm for constructing the vectors u(k) is described in .Sect.Z.l,while 
soltuions corresponding to the homogeneous problems, needed for consistency of the expansions 
on the limiting two-dimensional surface, are given in Sect.2.2. 

The asymptotic representation ~"(1, h) of the solution of the initial problem is 
presented in Sect.3 while the operator of the limit boundary value problem in the domain ois 
constructed in Sect.4. The functions of the boundary layer orginating near the plate side 
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surface are not examined in detail, only boundary conditions of the limit problem in f9o are 

formulated. 
Furthermore, the physical meaning of the coefficients of the system of limit problem 

equations is refined in Sect.5, and examples of analysing the effective plate stiffness 
characteristics and a comparison of the results with those available in the literature are 
given in Sect.6. 

2. Auxiliary construction 2.1. We consider problem (1.1) and (1.3) with the con- 
ditions (1.4) on the faces of the plate 0 and we seek its solution inthe form of the series 

OD 
V(x, h)= x hW)(X', h-9,) (2.1) 

)i=-0 

Substitution of (2.1) into relationships (1.1) and comparison of the coefficients (after 
changing the coordinates (x',x,)+(x', c) = (x',h-lx,)) for identical powers of the parameter h 
results in a recursion sequence of problems on the segments [Z,, L,,,+i],..., [I,_,, L,] of the 06 

axis for systems of ordinary differential equations with the parameter iE 0 

B,’ -&u(k) (x’, Lg = - (L“ + I;: T, (&) $-t&k-‘) (x’,]C) - (2.2) 

I’(&) dk_) (x’, b) 

Zr(+3x')=(XlrL,' + XITL;)(a/ax’), rE[-m, n], k= 0, l,... 

Matchingconditions are derived analogously from relationships (1.3) for the coefficients 
U(k) at the packet layer boundaries, as are the boundary conditions on its side surface, 
which have the form 

B,' +- II(') (x', I, T 0) - BF -& u(k) (x’, t,T O)= 

G"(&) u(k-1) (x', z,+ 0) - Lr'(&) u@-"(x',lr~o) + 

('% 0 (P%, -m - P+6,, n+l), hk-1.0 (P,-b, -m - p,+&, n+l)) (X’) 

~ck~(X’,ZrTO)-u(k)(x’.Zr+O)=O; rE[-m,nfi], 

k=O,l,... 

(2.3) 

(2.4) 

The Hooke's law relationships are used in the form (1.2) in deriving (2.2)-(2.4) and 
henceforth. The notation L, = B,TK, + BJr,, & = B,K, + BpKs is still used here, where 

KJ - KJ (ab’) are matrix differential operators with the elements kjj’ = kj,’ = k&(,-J) = ata%,; 

j = 1,2. It is assumed that functions with negative superscripts as well as layer character- 
istics with the numbers r=O and r&l--m,nl equal zero. The plus and minus signs in 
(2.3) correspond to the superscripts r;iiO and r<O, respectively. The boundary con- 
ditions on the plates faces are obtained from (2.3) for r = --m and r = n+ i. 

The homogeneous boundary value problem corresponding to (2.2)-(2.4) allows of the non- 
trivial solutions 

vPB'(~~)=(q,~;B,,~;a~)vs'(x'); q=i,2.3; k=O.l,... ci.Sj 

where va@)(x') are arbitrary functions of the coordinates r,, Z,E IL Consequently, the 
systems do not have solutions for arbitrary right-hand sides. 

In order to construct the coefficients of the asymptotic representation (2.11,weconsider 
the adjoint problem (2.2)-(2.4) in the domains 

9 +=(X:X'Eo,0<1<1,), Q_=(x:x'Eo,z_~g5g0) 

We shall consider the solvability conditions to be satisfied for these problems for 
fixed r for r= n, . . ..I and r= -m,...,--i. Then the coefficients u@) of the represen- 
tations of the solution V(x, h) in the domains & analogous to (2 .I) can be found by 
evaluating known quadratures solving the problems (2.2)-(2.4) sequentially for r E l-m, n]. 

Introducing in addition the normalization conditions u@) (x', 0)-O (k -0, i, . . :) we obtain for 
layers with the numbers j~[O,n] 

(2.6) 



&.,p+, 6~_*,,p,f) (x*)3 - ‘s’ (1,-I - 1) L’ (Il. k; x’. t) dt - 
‘r-1 

Kr(+$) f dk-‘) (x’. t)dt} - 

‘r-1 

Bq(l,-;i)[~ i L’(u;k;x’,wf + (6k.oP+.6r-*,oP*t)(x')] - 
,=I I,_* 

'I 

s 
(; - ~)LJ(u; k; x’, f)dt - W(-&) i &-l) (x’, L)dlj 

c t 

L (u; k; x’. I) = L,’ -$ lift-‘) (x’, f) + I ($) I#-‘) (x’, 0, 

Analogous formulas also hold for layers denoted by numbers in the interval I-m,-il. 
For the consistency of the coefficients constructed above for the asymptotic represen- 

tations is it necessary still to satisfy the adjoint condition (2.3) in the section n ={x: 
x’ z= 0, 6 = 0) of the plate G? by the plane (6 = 0). We take 11 as a reduction surface, 
then the remaining relationships not taken into account in (2.3) will be satisfied if for 

k = 0, I,. . . the expressions 

(2.7) 

2 p_‘(&)u-(X’,~,+l) + I’(-&) f u(k-2) (x', t) dt + 
t 

v--m-, I,+1 

(6k,,(p'- p-h 6k-I,Oh+ - i%-))@') 

are identically equal to zero for X'E o. 
2.2. In the general case the right-hand sides of (2.7) are different from zero and 

conditions (2.3) are not satisfied on n. To compensate for the residual m) originating 
in each step in k, we construct the solution of the homogeneous problem (2.2)-(2.4). 

lJ@) (x'. C;h)= 5 A%('. P)(x', 6) (2.8) 
m 

The principal terms (in h) In (2.8) are the vector functions "M.0) (x') given by (2.5). The 
boundary value problems to determine the coefficients of the series (2.8) agree with relation- 
ships (2.2)-(2.4) in which pf = 0, pa* = 0 while the subscript k is replaced by p. 

AsinSect.2.1,let the conditionsforproblems (2.2)-(2.4) to be solvable be satisfied in 
the domains n*. Seeking the solutions of these problems successively in the layers r = n. 
. . ., i and r = -tn,....--i. we find the vectors 

*(‘I ‘1 (x’, 5: r) = - 6(8 :’ -‘K’ + K,) (&) do) (x’) + vr)(x’; r) (2.9) 

in the first step (in h) of the algorithm for constructing the coefficients @sm. 
Here v&'J (x'; r) are functions independent of 6 and determined frcrmtbeconditionsof conti- 

nuity of the coefficients I('**) on the connecting surfaces tt = I,)* r = [--m+i,n-11 of 
the plate layers. 

The vector-functions (2.9) also satisfy conditions (2.3) of continuity of the stress 
tensor components on the reduction surfaces. The other coefficients of series (2.8) are 
also determined in an analogous manner in the next steps of the algorithm in p: they are 
polynomials of the variable 6 of degree p>i, but do not satisfy the conditions mentioned 
on n. The vectors of the residuals originating in the right-hand sides of the first con- 
ditions (1.3) in n generate the series 
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(2.10) 

when series (2.8) is substituted into the initial problem. 
The elements of the matrix L(P) are homogeneous, of order p, differential expressions 

whose coefficients depend on the elastic constants and the height of the plate layers. 
The constants of integration of the systems of differential equations (2.2) take part in 

the iteration processes when constructing the functions V@,P) (s', E; r) . Let us eliminate this 
arbitrariness: we will assume that all the coefficients of series (2.81 vanish on the surface 
n for p > 0, k = O,l,.. . 

3. Asymptotic form of the solution. The asymptotic representation (in h) Uh (x, k) 
of the solution ofthe,problem (l.l), (1.3)-(1.5) will be sought in the form (see /l, 5/) 

Uh (x, h) = v (x’; 6: h) + 
k. s=O 

h”+‘-* 5 h-Jwa'*' (x’* 5) + w (I, h) 
q=i 

(Jl = Jz = 1, J, = 2) 

Here V(z’, 6;h) is the solution (2.1) of problem (2.2)-(2.41, v(~**)(x’, E) are coef- 
ficients of the expansion (2.8) of the solution of the corresponding homogeneous problem, and 

w (x, h) is a function of the boundary layer originating near the side surface of the plate 

Q. 
Let the coefficients of the series V(x’,c;h) and U(Q(x', 6; h) be found in the iteration 

processes of Sects.2.1and2.2. Then the first two components on the right-hand side of (3.11 
satisfy (l.l), the second conditions of (1.3), conditions (1.4) and, for r# 0, and the 
first conditions of (1.3). In order for their sum to be an approximation to the exact solution 

u (r, h) outside a small neighbourhocd of the plates edge, additional conditions must be 
imposed on the coefficients of the representations (2.1) and (2.8). 

Omitting the boundary layer function in (3.11, substituting the expression obtained in 
the initial problem (l.l)-(1.5) and taking account of (2.7) and (2.10), we find the residual 
vector in the first group of conditions (1.3) on the surface n: 

R(~~)=~~h'-l(F("(.') + ~q~,-l-Jq~.)(~)v~k)(=,) (3.4 

We regroup the components in (3.2) so that each term of the series has an order in h no 
higher than k and depends on the coefficients vr) with superscipt P < k. Successively 
equating the expressions obtained to zero, we arrive at the relationships 

(3.3) 

&&x',h)= ~h.'..-'(~(~)v~-~)(=.)+ fiktJfl)(q)) 

Q-1 

The left-hand sides of (3.3) contain the unknown functions va'(x') while the right-hand 
sides are evaluated in functions defined in Sect.2.1 and in coefficients VP)@') with super- 
scripts p < k. The solutions II@) (x', 6). v(&*) (x', 6) of the adjoint problems considered in 
Sects.2.1 and 2.2 subject to the relationships (3.31, determine the asymptotic representation 
of a statically allowable displacement field for the initial problem (l.l)-(1.5) outside a 
small neighbourhood of the edge of the plate Q. 

The residuals introduced by the coefficients II@), VOID) of the series (3.1) into con- 
ditions (1.5) on the plate side surface are compensated when constructing the boundary layer 

w (x, h). The function W(x, h) is represented in the form of a power series intheparameter 
h (see /7, 9/). The conditions for the exponential decrease of the expansion coefficients in 
each step in k enable us to find the values of -tie functions VP (x') v = 1, 2, 3) and the 
normal derivative of the function vi"(x') on f3o. 

4. Limit boundary value problem. Relationships (3.3) and the conditions on &U 
originatingwhenconstructing the boundary layer generate boundary value problems to determine 
the unknown functions v*) (x') (k = 0, 1 , . ..) in the domain o. 

The operator coefficients L@')(a/8~') in (3.3) are independent of the superscript k, conse- 

quently, the functions v(k) (x') satisfy the identical boundary value problem in the two- 



dimensional domain 01 which is indeed limitinq with respect to the initial spatial problem 
(l.l)-(1.5). The operators L@)(I~/~x') (p = 0, 1, . .) are sought fora fixed s in each step ~1 
of the algorithm of Scct.2.2. The following matrices determine the left side of relationships 
(3.3) : 

L’O’ (a;ax’) =- L”’ (+3x’) =- 0, L(2) (a/ax’) - K~W’)K, (+3x’) ('1.1) 

W)(WW)= - K,W*)fi',K, (a,'ax') + K,~K,rGW', (diax') -I- 
K,'rH,K, (d,dx') 

L(J)(d,kW)= - K,'rK,'C(3)K,K,(ajax'j + K,rII,K,(i),'dx') 

Here H/(8/8x’) (j = 1,2) are certain differential expressions, respectively, of the first 
and second orders with coefficients which depend on the height and the elastic constants of 
the layers comprising the plate. The matrices G(') (i = 1, 2, 3) have the form 

(4.2) 

where A is the matrix of the elastic compliances associated with the matrix B in (1.2). 
System (3.3) of the limit problem is represented in the form 

L (-&) v(') (x')- Y(k) (x'), x' E o (4.3) 

W)(x’)=: (- W) -KIT f, H,K,v(k-l),U$k+u) (x’), 
j=* 

@= (@l,@,) 

The operator L(a/ax') has the form of a symmetric matrix whose rows are the expressions 

(4.4) 

It follows from (4.1), (4.3) and the definitions of the operators K,(aldr') in Sect.2 
that the operator E (a/&z')- 11 El, II:,,,(d/ax') is identical with the unique (2 X Sbmatrices L(*), 
byaminor different from zero, while the operator D(a/ax') is identical, respectively, with 
the element d,, of the matrix K$K,TG(')K,K2. The vector (S,, Ss,O)T is the third column of the 
matrix K,TGWK,KI or, equivalently, is obtained by transposition of the third row of the 
matrix KtTKITG@)K,. 

The constructions carried out here show that the operator L@lax’) of the limiting 
boundary value problem is selfadjoint and satisfies the condition of strong ellipticity. The 
boundary of the domain o is smooth and the systems (v(k), &#)/ao)(x'),x'E ao are the missing 
boundary condtions for (4.3). Consequently, problems (4.3) to determine the functions v(k)(x') 
are solvable single-valuedlyand, therefore, the description of the algorithm for constructing 
the coefficients of the representation (3.1) is completed. 

5. Effective stiffness characteristics of a laminar plate. The functions 
u,'"' (x') (I = 1, 2. 3) determine the principal term (in h) of the asymptotic representation 
(3.1) of the exact solution u(x,h) of problem (l.l)-(1.5), while the expressions v(x',h) = 
A-%@) (x') = A-*(u,, v#) (x') and W(x',h) = h-%,(") (x') are, respectively, the highest tangential 
displacements in the expansions in h, and the deflection of the reduction surface D. The 
vector-function (v,~)(x',h) satisfies system (4.3) in o. After obvious substitutions, ex- 
pressions (4.4) take the form 

(5.1) 

which is in agreement with the results obtained in /5/ by another method. 
Let us consider the matrices h'cC') (i =11,2,3), defined by (4.2) and occurring in the 

definition of the operator of the limit problem (4.3). Their elements are coefficients of the 

differential expressions (5.1) and are the effective stiffness characteristics of the plate Q 
in tension-shear and bending-torsion, and also describe the cross effects of interaction of 
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the mentioned states of the packet. The matrices &a), hW), ha@? are analogues of the static 
moments used in classical theory for a section of a plate of the zero-th, first, and second 
orders, respectively. 

Let d, be the height and t, the ordinate of the r-th layer middle surface. Using 
representation (4.2) we find 

n n 

h@l) = E B’d,, h’G@) = r, B’ c&t,, 
t-=-m i-=.--m 

(5.2) 

It follows from (5.2), in particular, that the elements S,,j = i,2 of the operator 
L(a/dx') equal zero for a plate of symmetric construction. Examples will be examined in Sect. 
6 that show that analogous equations can describe the state of stress and strain of plates of 
non-symmetric construction. 

6. Examples. lo. Let the materials of the packet layers be isotropic and let v,and E, 

be Poisson's ratio and Young's modulus of the r-th layer; ' E l-m, nl. The elements II bl’ Ic,jxl 
of the matrix B'in (4.2) take the form 

Bn' = Bn' = B' = E’ (I .- v,‘)-1, fi,; = pm’ _ ,yp’ 

Bns’=2-‘(1-v’)~‘, pns’=pn’=O 

The neutral surface of the packet Q is a distance 

~=~~‘drt,.($dr)-’ 

from the reduction plane II. 
Here and henceforth, summation is with respect to r and s between -m and n. Passage to 

it in (3.1) is realized by renormalization of the coefficients v(~'P) (x', g; r) by the conditions 

v(li+')(x',h-llo; ') = 0; k=O,t,...; p= 1,2,.. (6.1) 

The operator L (didx’) takes the form of a block matrix: the tangential displacements 
v(k) (I') of the neutral surface satisfy the system of equations of the generalized plane state 
of stress, while the deflection I satisfies the Sophie Germain equation. Taking (6.1) 
into account, representations for the effective elastic characteristics of a plate are derived 
directly from (5.1) 

V. = @‘yd’ (Cp’d,) -1 

E. = rffE;'(l- v') d,(Ig'd')-'IB'(i +v,) dr 

The effective cylindrical stiffness of the plate R 

is made up of the stiffness D’= fl’d,‘/i2 of each layer and the apparent stiffness of the packet 
due to layer interaction. For the special case of a plate of symmetric construction (dr = d-r, 
BP= b-‘,:,=t_‘) the formulas presented agree with the results obtained in /13/. Comparing D, 
with the cylindrical stiffness of a packet formed by alternating soft and hard layers /14/ we 
see that the corresponding apparent stiffnesses can differ substantially depending on the 
relationships between the elastic and geometric parameters of the layers. 

20. Now let the packet consist of orthotropic layers with identical elastic moduli E,, 
E,. ~1,' VII one of the principal elasticity axes of each layer agrees with the Or, axis in 
direction while the other two make the angles y','~i I-m,nl with the 01, and Or, axes. To 
investigate the effective elastic properties of the packet it is natural to introduce a co- 
ordinate system rotated through a certain angle cp>o in the ZlO% plane. 

The matrices 8' are computed by formulastotransform the elastic constants during 
rotation of the coordinate axes /13/. In this case, unlike Example lo, the elements 8,' and 

B"' of the matrix Br do not equal zero and have the following form in the above-mentioned 
coordinate system: 
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The plate neutral surface coincides with the middle plane of the packet. The operator 
L (If/&') has the form of a block matrix here, as in Example lo. 

The expressions presented above and (5.1) show that the tangential displacements of the 
packet neutral surface satisfy the equations of the generalized plane state of stress of an 
orthotropic body for a certain fixed value q. of the angle (r if the following condition is 
satisfied: Id, sin4y,Z d,eos(Zy,--/4)Ld,sin(2y,- n/4)+ (6.2) 

Z d, sin 2~~): dr cm 2v,Z d, cod 4y, = 0 

Let the relationships (6.2) be satisfied. Then the desired angle is the solution of 
the equation 

tg 2% = Zd,sin Zv,(Z dr COI 2~,)-1 

By calculating the coefficients of the differential operator D (didz') in (5.1) analogously. 
it can be shown that the deflection of the neutral surface satisfies the orthotropic plate 
bending equation if (6.2) holds, in which the expression Dr= ha/i2 + d,.f,(~, - 112) has replaced 
d,, where 2 is the packet height. The principal elasticity axes of a laminar plate here turn 
out to be rotated throughtheangle 

It follows from (4.2) and (4.3) that if the principal elasticity axes (of the same or 
different kinds) of the layers are in agreement then a packet of non-symmetric construction 
will behave like a plate fabricated from a homogeneous orthotropic material. 

The effective elastic constants E,*,E,*,v,,*, Y*,*,@ are computed exactly as in example lo. 
For the special case of a plate of regular construction (dr= d, y+= nrrr’. r4--n, nl) the state 
of stress and strain is characterized by the isotropy of the elastic properties noted in /12/ 
under tension or shear. It follows directly from (5.2) that under bending the function 
describing the deflection of the neutral surface of a packet of the structure mentioned will 
satisfy the orthotropic plate bending equation whose principal elasticity axes make the angles 
defined by (6.3) with the coordinate axes Or, and 01,. 

We wish to thank N.F. Morozov and S.A. Nazarov for valuable consulation and for their 
interest. 
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